请点击此处给我们留言

东莞市 大岭山镇杨屋第一工业区详锋街97号愉和工业园A栋

18565871528(tel)

18565871528(fax)

当前位置: > d88尊龙手机端下载 >

应力强度干涉理论

2024-01-19 03:29字体:
分享到:

  结合剂压力角摆线齿廓相对间隙铁制不粘锅沙滩凳应力强度干涉模型接触载荷——两个零件表面间的接触有点接触、线接触 和面接触。零件受载后在接触部位的正交压缩载荷称为 接触载荷(表3-1(e))  例如,滚动轴承工作时,滚子与滚道之间,齿轮传动 中轮齿与轮齿之间的压力都是接触载荷。  在接触载荷作用下,主应力与最大切应力之比是不定。

  静载荷——缓缓地施加于零件上的载荷,或恒定的载荷。 冲击载荷——以很大速度作用于零件上的载荷,冲击载 荷往往表现为能量载荷。 交变载荷——载荷的大小、方向随时间变化的载荷,其 变化可以是周期性的,也可以是无规则的。

  在机械产品中,广义的应力是引起失效的负荷,强度是 抵抗失效的能力。由于影响应力和强度的因素具有随机 性,所以应力和强度具有分散特性。 要确定应力和强度的随机特性,首先应了解影响应力和 强度随机性的因素。

  假设 S  s0 与 为两个独立的随机事 件,因此两独立事件同时发生的概率为

  影响应力的主要因素有所承受的外载荷、结构的几何形 状和尺寸,材料的物理特性等 影响强度的主要因素有材料的机械性能、工艺方法和使 用环境等

  机械产品所承受的载荷大都是一种不规则的、不能重复 的随机性载荷 ,例如  自行车因人的体重和道路的情况差别等原因,其载荷 就是随机变量。  飞机的载荷不仅与载重量有关,而且飞机重量、飞行 速度、飞行状态、气象及驾驶员操作有关。 零件的失效通常是由于其所承受的载荷超过了零件在当 时状态下的极限承载能力的结果。 零件的受力状况包括:载荷类型、载荷性质,以及载荷 在零件中引起的应力状态。

  根据以上干涉模型计算在干涉区内强度大于应 力的概率——可靠度。如图3-4所示,当应力为时, 强度大于应力的概率为  PS  s0    f S dS

  由于制造(加工、装配)误差是随机变量,所以零、构件的 尺寸也是随机变量 设计方案的合理性和设计考虑因素不周到是零件失效的重要 原因之一。例如:

  式中: L——载荷; T——温度; A——几何尺寸变量,如长度、截面积、转动惯量等; p——物理性质变量,如弹性模量、泊松比、热膨胀系数等; t——时间; m——其它。

  轴的台阶处直角形过度,过小的内圆角半径,尖锐的棱边等造成应 力集中,这些应力集中处,有可能成为零件破坏的起源地 对零件的工作条件估计错误,如对工作中可能的过载估计不足,造 成设计的零件的承载能力不够 设计者仅根据材料的常规性能指标做出决定,而这些指标根本不能 反映材料对所发生的那种类型的失效的抗力

  如工作环境中的温度、湿度、沙尘、腐蚀液(气)等的 影响,操作人员的熟练程度和维护保养的好坏等。

  机器在使用过程中超载使用,润滑不良,清洁不好,腐 蚀生锈,表面碰伤,在共振频率下使用,违反操作规程, 出现偶然事故,没有定期维修或维修不当等,都会造成 零件的早期破坏。

  通过泰勒级数展开,用矩法近似确定随机变量的函 数的均值及标准差。 分两种情况: 一维随机变量 与多维随机变量。 3.5.1 一维随机变量  设y为正态分布随机变量X的函数 y  f  X ,X的均值  X和方差  X已知,用泰勒级数展开近似求解y的均 值  y和方差  y。现将 y  f  X 在 X   处展开,得

  环境介质包括气体、液体、液体金属、射线辐照、固体 磨料和润滑剂等。他们可能引起的零件失效情况列于表32中。 对于某一零件失效原因的准确判断,必须充分考虑环境 介质的影响。

  建立与失效应力判据相对应的强度判据,常用的强度判据有 最大正应力强度判据、最大剪应力强度判据、最大变形能强 度判据等。 确定名义强度。名义强度指在标准试验条件下确定的试件强 度,常用名义强度有强度极限、屈服极限、疲劳极限、变形、 变形能和磨损(腐蚀)量等。 用适当的修正系数修正名义强度,通常考虑的修正系数有尺 寸系数、表面质量系数、应力集中系数等。 确定强度方程中所有参数和系数的分布,通过概率运算、矩 法或蒙特卡落法得到相应的强度分布。

  S  s或S  s  S——零件(部件)的强度; 0  s——零件(部件)的应力。

  实际工程中的应力和强度都是呈分布状态的随机变量, 把应力和强度的分布在同一座标系中表示(如图3-3所示) 当强度的均值大于应力的均值时,在图中阴影部分表示 的应力和强度 “干涉区”内就可能发生强度小于应力— —即失效的情况 这种根据应力和强度干涉情况,计算干涉区内强度小于 应力的概率(失效概率)的模型,称为应力——强度干 涉模型。 在应力——强度干涉模型理论中,根据可靠度的定义, 强度大于应力的概率可表示为

  交变应力的形式  对称循环应力——等值交变的拉伸、压缩和剪切应力 (图3-1(a))。  脉动循环应力——单向应力,其应力值从零变化到最 大,r=0,如图3-1(b)所示。  非对称循环应力——应力值由最小到最大变化,最小 应力既可能是正值(图3-2(c)),也可能负值。  随机循环应力——实际运转的机器,由于服役条件可 能发生变化

  扭转载荷——作用在垂直于零件轴线平面内的力偶,它 使零件发生扭转变形。  在扭转载荷作用下,横截面上的切应力的分布规律是: 从表面最大到横截面中心处为零(这里讲的“中心 点”,是指扭转中心轴线与横截面的交点)。 剪切载荷——使零件内相邻两截面发生相对错动的作用 力。  表3-1(d)表示螺栓在连接接合面处受剪切,并与被 连接孔壁互压。螺杆还受弯曲,但在各接合面贴紧的 情况下可以不考虑。  在剪切载荷作用下,力大小沿平行于最小切应力的横 截面上均匀的。

  如毛坯生产中产生的缺陷和残余应力、热处理过程中材 质的均匀性难保一致、机械加工对表面质量的影响等, 装配、搬运、储存和堆放等,质量控制、检验的差异等, 以上因素构成了影响应力和强度的随机因素。

  轴向载荷——力在作用在零件的轴线上,大小相等,方 向相反,包括轴向拉伸和轴向压缩(表3-1(a))载荷  在轴向载荷作用下,应力沿横截面的分布式均匀的。  零件上主应力与最大切应力的关系为

  弯曲载荷——垂直于零件轴线的载荷(有时还有力偶), 它使零件产生弯曲变形。  在弯曲载荷作用下,零件横截面上的主应力分布的规 律是:从表面应力最大改变到中性轴线处应力为零。 并且,中性轴线一侧为拉伸应力,另一侧为压缩应力。

  在机械产品中,零件(部件)是正常还是失效决定于强 度和应力的关系。  当零件(部件)的强度大于应力时,其能够正常工作;  当零件(部件)的强度小于应力时,其发生失效。  因此,要求零件(部件)在规定的条件下和规定的时 间内能够承载,必须满足以下条件

  用FMEA确定需要进行可靠度计算的重要失效模式,如:静 强度断裂、屈服、失稳、变形过大、疲劳、磨损、腐蚀等 ; 针对不同的失效模式确定相应的失效判据,如最大正应力、 最大剪应力、最大变形能、最大应变、最大磨损量等; 针对不同失效判据,应用相关专业(如材料力学、弹塑性理 论、有限元分析、断裂力学和实验应力分析等)知识进行应 力分析计算; 确定采用的修正系数对计算的名义应力进行适当的修正,得 到相应应力分量的最大值。常用的应力修正系数有:应力集 中系数、载荷系数、温度系数、表面处理等; 计算主应力或复合应力,并确定应力方程中每个参数和系数 的分布,通过概率运算、矩法或蒙特卡罗法得到相应的应力 分布。